A Novel Prototype Reduction Method for the K-Nearest Neighbor Algorithm with K >= 1

نویسندگان

  • Tao Yang
  • Longbing Cao
  • Chengqi Zhang
چکیده

In this paper, a novel prototype reduction algorithm is proposed, which aims at reducing the storage requirement and enhancing the online speed while retaining the same level of accuracy for a K-nearest neighbor (KNN) classifier. To achieve this goal, our proposed algorithm learns the weighted similarity function for a KNN classifier by maximizing the leave-one-out cross-validation accuracy. Unlike the classical methods PW, LPD and WDNN which can only work with K = 1, our developed algorithm can work with K ≥ 1. This flexibility allows our learning algorithm to have superior classification accuracy and noise robustness. The proposed approach is assessed through experiments with twenty real world benchmark data sets. In all these experiments, the proposed approach shows it can dramatically reduce the storage requirement and online time for KNN while having equal or better accuracy than KNN, and it also shows comparable results to several prototype reduction methods proposed in literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms

A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...

متن کامل

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

A Novel Continuous KNN Prediction Algorithm to Improve Manufacturing Policies in a VMI Supply Chain

This paper examines and compares various manufacturing policies which manufacturer may adopt so as to improve the performance of a vendor managed inventory (VMI) partnership. The goal is to maximize the combined cumulative profit of supply chain while minimizing relevant inventory management costs. The supply chain is a two-level system with a single manufacturer and single retailer at each lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010